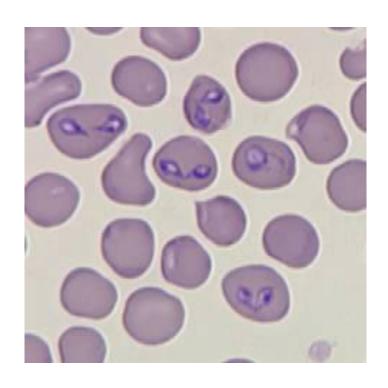
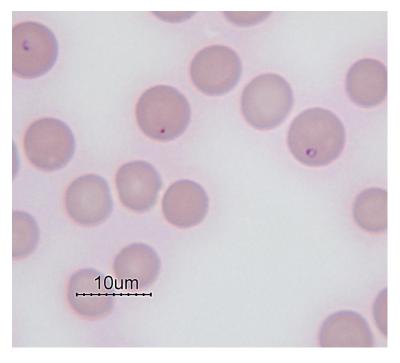
Canine Babesiosis

Adam J. Birkenheuer, DVM, PhD, DACVIM


North Carolina State University College of Veterinary Medicine Raleigh, NC

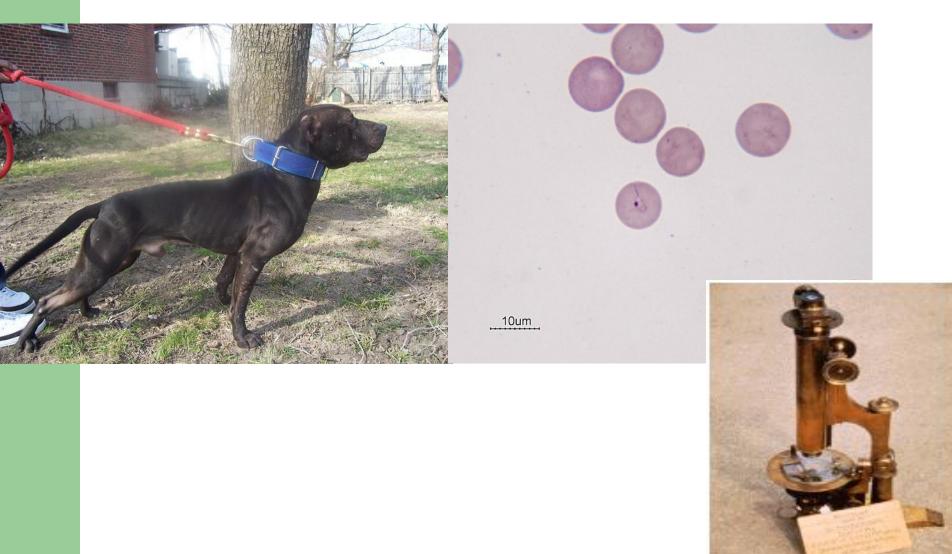

Babesiosis

- First tick-transmitted infection
- Smith and Kilbourne
 1893
- Causative agent of "Texas Fever" in cattle
- How did they diagnose it?

Classification

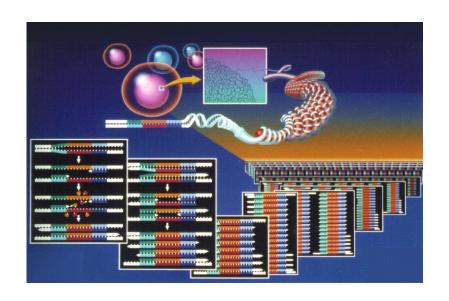
Classification

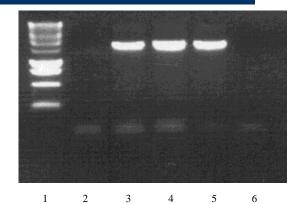
= Babesia bovis


= Babesia canis

History of canine babesiosis

- 1896: First case of canine babesiosis
- 1934: First canine case in USA
- 1968: First case of a small canine Babesia in USA
- 1983-1992: *Babesia canis* is prevalent in greyhounds
- 1991: First outbreak of canine babesiosis caused by small *Babesia*
- 100 years later, how were they diagnosed?


July 1, 1995: My first day as a veterinarian


Polymerase Chain Reaction

- 1991: First Babesia
 DNA sequence in
 Genbank
- 1995: Two canine Babesia DNA sequences available
- Babesia canis
- Babesia gibsoni

What about our isolates?

- 3 Partial 18S rRNA gene sequences in GenBank for canine Babesia spp. in 1999
 - 2 B. canis, 1 B. gibsoni (from 1991 CA report)
- PCR primers designed by NCSU to differentiate B. canis and B. gibsoni
- Our "B. gibsoni" amplified with "B. canis" primers and NOT "B. gibsoni"

Lane 1: 1KB Molecular weight marker

Lane 2: canine DNA

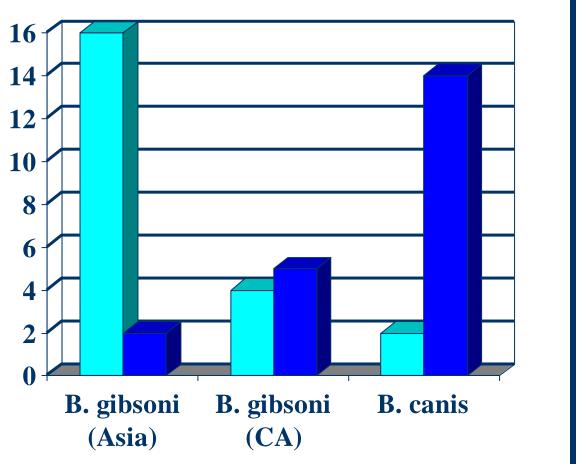
Lane 3: B. gibsoni (Asian genotype)

Lane 4: B. c. canis

Lane 5: B. gibsoni (California/USA genotype)

Lane 6: negative (no DNA) control

Epidemiology


- Serologic and molecular survey:
 - Stray dogs in three geographic regions of NC
 - Three kennels where B. gibsoni infections had been diagnosed previously

Methods

- Samples:
- Stray: 359 dogs housed in animal shelters
 - Eastern NC: 168 dogs
 - Central NC: 140 dogs
 - Western NC: 51 dogs
- Kennel: 159 dogs housed in kennels where B. gibsoni infections had been diagnosed
 - Kennel I: 59 dogs
 - Kennel II: 43 dogs
 - Kennel III: 47 dogs

Results

Results

- Microscopy Stray
 - 1 dog with small piroplasms
- Microscopy Kennel
 - 13 dogs small piroplasms

- PCR Stray
 - 1 B. canis vogeli
 - 2 B. gibsoni (Asian)
- PCR Kennel
 - 14 B. gibsoni (Asian)

Conclusions

- Babesia gibsoni is endemic to NC
- Prevalence in kennels is high (6.8-25.6%)
- Seroreactivity may not accurately predict Babesia spp.
- Kennels comprised of American Pit Bull Terrier type dogs (96%)

Hypothesis:

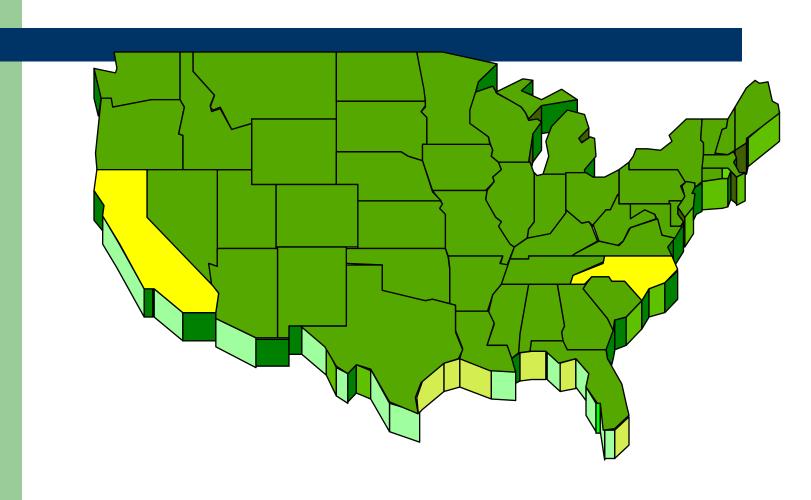
 Dogs that test positive for B. gibsoni are more likely to be American pit bull terriers

Approach

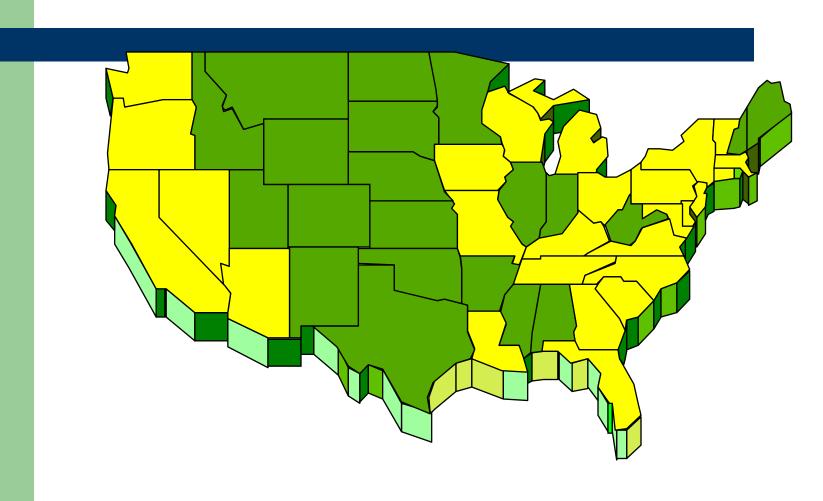
 Retrospective analysis samples submitted to the NCSU-Vector Borne Disease Diagnostic Laboratory for *Babesia* PCR between May 2000 and October 2003

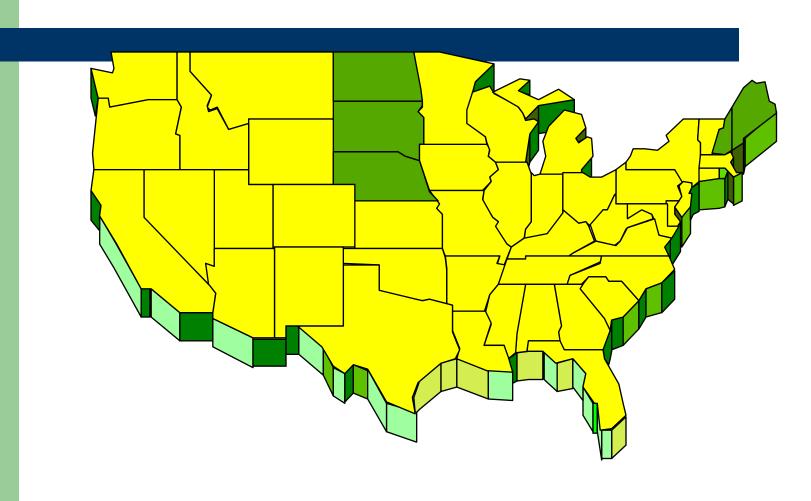
Results

- 688 canine submissions were reviewed
 - Geographic location
 - Breed
- 145/688 (21%) samples tested positive for the presence of *Babesia* spp. DNA


Results

	Babesia gibsoni	Babesia canis vogeli	Other piroplasm
Total	131	11	3
APBT*	121	0	1
Greyhound	0	8	0
Other Breed	10	3	2


^{*} APBT: American Pit Bull Terrier


How extensive is the infection: 1995

How extensive is the infection: 2003

How extensive is the infection: 2010

Results

- Dogs testing positive for Babesia spp DNA were more likely to be APBT dogs compared to all other dogs tested (Odds ratio 12.7; 95% CI 7.66 to 21.20; p < 0.0001)
- Dogs testing positive for B. c. vogeli DNA were more likely to be Greyhounds compared to other non-APBT dogs tested (Odds ratio 4.96; 95% CI 1.08 to

25.51; p = 0.02)

Babesia gibsoni is widespread in USA

Typical living conditions of the kennel dogs

Hypothesis

- Babesia gibsoni infections in the US are transmitted directly via dog bites and are not vector-transmitted
- APBT owners were not willing to give out information about previous bite wounds
- Babesia gibsoni infections in non-pit bull dogs are associated with a recent dog bite

Approach

- Retrospective analysis of medical records of non-APBT dogs confirmed to have *B. gibsoni* infection identified by PCR in the VBDDL at NCSU
- To determine whether or not exposure to ticks or a history of a fight with an American Pit Bull Terrier were risk factors for *B. gibsoni* infection

Results

- 15 B. gibsoni infected dogs that were not APBTs were identified
 - 3 excluded due to lack of known history
- 12 Ehrlichia ewingii infected dogs were used as a control group representing dogs with a tick-transmitted disease

Dog bite APBT* bite Ticks Housed with infected dog

Babesia gibsoni	9/12	9/12	2/12	4/12	
Ehrlichia ewingii	3/12	0/12	5/12	2/12	

^{*} APBT: American Pit Bull Terrier

Results/Conclusions

- B. gibsoni infected dogs were more likely to have had a recent dog bite than E. ewingii infected dogs (Odds ratio 9.0; 95% CI 1.07 to 96.34; p = 0.014)
- The association was stronger (p < 0.0001)
 when the dog inflicting the bite was an APBT
- The association remained (p = 0.045) when each household with multiple infected dogs was counted as a single case

Now What?

- Developed test
- Identified epidemic
- Identified risk factors for infection
- THERE IS NO EFFECTIVE TREATMENT FOR Babesia gibsoni!

Treatment

- Treatments reduce morbidity and mortality but cannot clear the infections
 - Imidocarb, diminazene, trypan blue, phenamidine, doxycycline, clindamycin....
- Treated dogs are carriers and are at risk for recurrence of signs and can transmit infections to other dogs

Atovaquone and Azithromycin

- Atovaquone is a hydroxy-1,4-naphthoquinone: analog of ubiquinone and interferes with electron transport
- Azithromycin is an azalide antibiotic and interferes with protein synthesis
- Both drugs have anti-Babesia activity
- Together have been effective against other Babesia spp.

(Hughes 1995, Wittner 1996, Pudney 1997, Gray 1999, Krause 2000)

Specific Aim

 To determine whether or not an atovaquone and azithromycin drug combination would decrease Babesia gibsoni parasitemia below the limit of detection

Approach

- Double-blind placebo-controlled
 - 11 treatment
 - 11 placebo
- Could detect 60% difference between groups (based on pilot study)
- 3 post-treatment sample dates
- Detection Semi-nested PCR that can detect 50 organisms/ml
- CBC, biochemical profiles

Results

Dog	Group	Day 0	Day 60	Day 90	Day 120
•	I Treatment	+	-	-	-
2	2 Treatment	+	-	-	-
3	3 Treatment	+	-	-	ND
4	1 Treatment	+	-	-	-
ţ	5 Treatment	+	-	-	-
6	6 Treatment	+	+	+	ND
7	7 Treatment	+	-	-	-
3	3 Treatment	+	-	-	-
Q	9 Treatment	+	-	-	-
10) Treatment	+	-	-	-
11	I Treatment	+	-	+	ND
12	2 Placebo	+	+	+	+
13	3 Placebo	+	+	ND	ND
14	1 Placebo	+	+	+	-
15	5 Placebo	+	+	+	+
16	6 Placebo	+	+	+	ND
17	7 Placebo	+	-	+	+
18	3 Placebo	+	+	+	+
19	9 Placebo	+	-	+	+
20) Placebo	+	+	+	+
2′	l Placebo	+	+	-	+
22	2 Placebo	+	+	+	+

^{+,} positive PCR test

ND, not determined


^{-,} negative PCR test

Results/Conclusions

- There was a significant difference between the treatment and placebo groups (p= 0.0001)
- No side-effects were reported in either the treatment or placebo treated dogs
- Only treatment reported to eliminate detectable
 B. gibsoni parasitemia

There are currently at least 9 genetically unique canine piroplasms

- 1. B. gibsoni
- 2. B. vogeli
- 3. Babesia sp. coco
- 4. B. conradae
- 5. B. canis
- 6. B. rossi
- 7. T. annae
- 8. Novel sp. in England
- 9. T. equi
- 10. There will be more!

Conclusions

- There is no microscope objective powerful enough to decipher DNA sequence
- There are currently 745,314 Babesia DNA sequences in Genbank
- We are probably just seeing the tip of the iceberg
- Babesia are not as "species-specific" as we think
- Humans are a good model for animal disease

Questions?

